
Abstract

This map is one of a series of soil landscape maps that are intended for all of central and eastern NSW, based on standard 1:100,000 and 1:250,000 topographic sheets. The map provides an inventory of soil and landscape properties of the area and identifies major soil and landscape qualities and constraints. It integrates soil and topographic features into single units with relatively uniform land management requirements. Soils are described in terms of soil materials in addition to the Northcote and the Great Soil Group classification systems.

Related Datasets: The dataset area is also covered by the mapping of the Soil and Land Resources of the Hawkesbury-Nepean Catchment and Acid Sulphate Soil Risk Mapping.

Online Maps: This and related datasets can be viewed using eSPADE (NSW's soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area.

Reference: McInnes S.K., 1997, Soil Landscapes of the St Albans 1:100,000 Sheet map and report, NSW Department of Land and Water Conservation, Sydney.

Resource locator

Data quality Name: Data quality statement
statement
Protocol: WWW:DOWNLOAD-1.0-http--download
Description:
DQS - Soil Landscapes of the St Albans 1:100,000 Sheet
Function: download
Show on Name: Show on eSPADE Web Map
eSPADE Web
Map
Protocol: WWW:DOWNLOAD-1.0-http--download
Description:
View dataset on eSPADE spatial viewer.
Function: download
NSW Name: NSW Government Online Shop

Government
Online Shop

Soil map
information
Protocol: WWW:DOWNLOAD-1.0-http--download
Description:
Purchase hardcopy map and report from Shop.DPIE website
Function: download
Name: Soil map information
Protocol: WWW:DOWNLOAD-1.0-http--download
Description:
Web page about soil maps in NSW.
Function: download

Land and soil
 information

Protocol: WWW:DOWNLOAD-1.0-http--download

Description:
Web page about land and soil information in NSW.
Function: download

Spatial reference system

Code identifying the spatial 4283
 reference
 system
 Equivalent \quad 1:None scale

Additional information source

GIS Field name descriptions

CODE - Soil landscape code
NAME - Soil landscape name
PROCESS - Process Group of the soil landscape. Groups are named after either recent or current land-forming processes, or conditions that influence soil parent material or soil type. Descriptions of these groups are available within soil landscape reports and on the DPIE website.
LANDSCAPE - A string combining process group and the soil landscape code. The first two capital letters are the process groups abbreviation and the remaining letters are the soil landscape code.
VERSION - Version number

Available Formats

- View online using eSPADE Spatial viewer
- Download JPG map, report or GIS ESRI shapefiles(.shp) \& layer files (.lyr) from SEED data portal.
- Purchase a hard-copy map and report from Shop.DPIE
- Soil profile points data is also available in MS spreadsheet format by contacting the data custodians at soils@environment.nsw.gov.au

Topic category

Keyword set

keyword value
AGRICULTURE
GEOSCIENCES-Geology
GEOSCIENCES-Geomorphology
HAZARDS-Flood
HAZARDS-Landslip
LAND-Topography
SOIL
SOIL-Chemistry
SOIL-Erosion
SOIL-Physics
VEGETATION
Originating controlled vocabulary

Title	ANZLIC Search Words
Reference date	$2008-05-16$

Geographic location

West bounding longitude
150.501156

East bounding longitude
151.001154

South bounding latitude	-32.998423
NSW Place Name	St Albans 1:100,000 map sheet
Vertical extent information	
Minimum value	-100
Maximum value	2228
Coordinate reference system	
Authority code	urn:ogc:def:cs:EPSG::
Code identifying the coordinate reference system	5711
Temporal extent	
Begin position	1993-01-01
End position	N/A
Dataset reference date	
Resource maintenance	
Maintenance and update frequency	Unknown
Contact info	
Contact position	Data Broker
Organisation name	NSW Department of Climate Change, Energy, the Environment and Water
Telephone number	131555
Email address	data.broker@environment.nsw.gov.au
Web address	$\underline{\text { https://www.nsw.gov.au/departments-and-agencies/dcceew }}$
Responsible party role	pointOfContact

Lineage

Provisional soil landscapes were established, based firstly on the dominant geomorphic process responsible for the formation of the landscape and secondly, on the geological parent material. The boundaries of these provisional soil landscapes were mapped using stereoscopic interpretation of 1:25,000 black and white aerial photographs transferred onto 1:25,000 base maps. After field checking these boundaries and detailed investigation of the soils, the provisional landscapes were confirmed, amalgamated or sub-divided. The resulting soil landscapes are presented on the map at 1:100,000 scale in groups based on their dominant geomorphic process. A colour has been allocated to each group.

Soils were examined and described in detail at 159 sites and inspected at many hundreds more over the 20 soil landscapes. At each described site, soil morphological data and site information were recorded on Soil Data Cards and later transferred into the Soil and Land Information System (SALIS). 114 soil samples were collected for laboratory analysis.

The GIS shapefile linework has been updated to reflect latest hydrology data. Therefore small differences will occur between the shapefile and hard copy map.

Limitations on public access

Scope dataset

Explanation Each soil landscape generally has a representative profile (type profile) for each sublandscape (facet) within it. Soil landscapes with difficult access may have very little to no soil profile descriptions. The number of soil profile descriptions and observations are within the recommended range specified in the Australian Soil and Land Survey Handbook (Reid 1988). Soil landscape polygons less than 40 hectares and elongated polygons less than 300 m wide are generally not shown unless they are unusually significant.

DQ Completeness Omission

Effective 1997-06-01
date

DQ Conceptual Consistency
Effective 1997-06-01
date

Explanation The map and report have been checked for technical consistency and compliance with soil landscape map series standards. Map unit concepts and polygons, major soil types and soil landscape descriptions have been field verified (field edited) by a peer soil surveyor. Soil landscape boundaries have been checked and refined using iterative field and aerial photo checks.

DQ Topological Consistency

Effective 1997-06-01
date
Explanation Logical consistency of vector data was assessed at the time of map digitisation and ArcGIS was used to ensure all polygons in the shapefile are topologically correct.

DQ Absolute External Positional Accuracy

Effective date

Explanation Boundaries between soil landscapes are drawn as solid lines where they could be delineated reliably and broken lines where they were more diffuse or difficult to identify. Solid line boundaries are generally accurate within 100m. Dashed line boundaries are generally accurate within 100 to 250 m . Dotted line boundaries are generally accurate within 250 to 400 m .

Observations and soil profile numbers are located onto the field sheets in the field. Location is determined by map reading (with accuracy to 25 m) and where this is not possible using Global Positioning Systems (with accuracy within 100m). Field sheets are digitised to 13 m accuracy.

DQ Non Quantitative Attribute Correctness

Effective date 1997-06-01

Explanation Soil landscape map units are individualised by unique combinations of soil type, topography, geology, vegetation, land use existing erosion/land degradation and constraints to development. The land and soil attributes in this product were predominately assessed from field observations and aerial photo interpretation.

Soil laboratory tests are undertaken for at least one representative sample for each soil material. Where possible, the chemical test methods adopted are the same as those in Raymond and Higginson (1992). Single test results provided for each soil material are intended as a guide only and variation in physical and chemical properties within each soil material should be anticipated.

Soils were examined and described in in the field. At each site, soil morphological data and site information were recorded on Soil and Land Information System (SALIS) cards. Sufficient field work was undertaken within each soil landscape to identify the range of soils present and to enable their distribution within the landscape to be described.

Responsible party

Contact position	Data Broker
Organisation name	NSW Department of Climate Change, Energy, the Environment and Water
Telephone number	131555
Email address	$\underline{\text { data.broker@environment.nsw.gov.au }}$
Web address	$\underline{\text { https://www.nsw.gov.au/departments-and-agencies/dcceew }}$
Responsible party role	pointOfContact

Metadata point of contact

Contact position	Data Broker
Organisation name	NSW Department of Climate Change, Energy, the Environment and Water
Telephone number	131555
Email address	data.broker@environment.nsw.gov.au
Web address	$\underline{\text { https://www.nsw.gov.au/departments-and-agencies/dcceew }}$
Responsible party role	pointOfContact
Metadata date	2024-02-26T15:39:55.222776

Metadata language

