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Intertidal wetlands such as mangrove and saltmarsh are increasingly susceptible to areal
losses related to sea level rise. This exposure is potentially offset by processes that might
enable wetlands to accrete in situ or migrate landward under sea level rise, and planning
policies that might open new opportunities for migration. We present and demonstrate a
method to predict intertidal wetland distribution in the present-day landscape using
random forest classification models, and use these models to predict the intertidal
wetland distribution in future landscapes under specified sea level scenarios. The
method is demonstrably robust in predicting present-day intertidal wetland distribution,
with moderate correlation or better between predicted and mapped wetland distributions
occurring in nearly all estuaries and strong correlation or better occurring in more than half
of the estuaries. Given the accuracy in predicting present-day wetland distribution the
method is assumed to be informative in predicting potential future wetland distribution
when combined with best available models of future sea level. The classification method
uses a variety of hydro-geomorphological surrogates that are derived from digital elevation
models, Quaternary geology or soils mapping and land use mapping, which is then
constrained by a representation of the future sea level inside estuaries. It is anticipated that
the outputs from applying the method would inform assessments of intertidal wetland
vulnerability to sea level rise and guide planning for potential wetland migration pathways.
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1 INTRODUCTION

Coastal wetlands provide several important ecological services, including the provision of habitat,
sediment stabilisation, carbon sequestration, and nutrient cycling (Barbier et al., 2011). These
intertidal habitats are under pressure from numerous threats including coastal development,
deforestation, aquaculture, weed invasion, damage by domestic and feral animals, climate change
and sea level rise (e.g., Adam, 2009; Osland et al., 2016; Rogers et al., 2016; Gabler et al., 2017). The
former pressures manifest in detail at the local scale whereas the latter two are regional in their
impact.

Impacts to wetlands from climate change will be manifold, relating to increases in temperature
and CO2, the frequency and intensity of storms and changes in rainfall patterns which in turn may
affect soil salinity (Ross and Adam, 2013). Sea level rise (SLR) is, however, the most obvious and well-
studied future impact on coastal wetlands, with three broad scenarios recognised at the estuary scale:
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1) no change to the present-day wetlands because they
accumulate sediment at a rate that matches regional SLR; 2) a
net increase in the wetland area as suitable new areas become
inundated and offset any losses; and 3) a net decrease in wetland
area because losses through drowning and/or erosion by
increased wave energy exceed potential gains from
sedimentation or migration (e.g., Morris et al., 2002;
Woodroffe and Davies, 2009; Kirwan and Megonigal 2013;
Spencer et al., 2016; Schuerch et al., 2018; Rogers et al., 2019).
The latter scenario, where migration potential is limited by land
development or topography, is termed “coastal squeeze”
(Townend and Pethick, 2002; Borchert et al., 2018). Intertidal
wetlands are typically found in narrow sections of coastline
fringing estuaries where there has also been substantial human
modification to the coastlines. As such, foreshore structures may
substantially influence the ability of wetlands to migrate with SLR
(Ross and Adam 2013). This broad range in potential response of
coastal wetlands to SLR makes it challenging to assess regional
vulnerability.

In their investigation spanning sixteen estuaries and six states in
the United States, Raposa et al. (2016) identified ten metrics,
including rate of SLR, tidal range, sediment supply and a variety
of topographic factors that contribute to tidal marsh resilience.
Applying thresholds to each metric to obtain scores, they
integrated the metrics into an overall resilience index to inform
their vulnerability assessment. The metrics were all founded upon
continuous spatial data layers and the vulnerability index could be
uniformly mapped across the estuary. In a regional scale study of 39
estuaries along the US Gulf of Mexico coast, Borchert et al. (2018)
determined the lateral accommodation space under three SLR
scenarios (0.5, 1.0, and 1.5 m). Like the previous study, all the
foundational data were spatial layers thus allowing continuous
mapping of both barriers and opportunities for wetland
migration. Doughty et al. (2018) evaluated the regional resiliency
of coastal wetlands in Southern California, United States by
associating migration potential with wetland hypsometry
determined from digital elevation models (DEMs). Similarly, in
their investigation of Chesapeake Bay, United States Molino et al.
(2021) used the land slope at the inner boundary of saltmarsh to
assess potential saltmarsh migration under SLR. While the three
abovementioned scenarios of wetland response to sea level rise are
complex and depend on numerous factors manifesting at nested
scales, the potential for upslope wetland migration is widely
recognised as an important component of any assessment of
wetland vulnerability to SLR (e.g., Borchert et al., 2018; Doughty
et al., 2018; Molino et al., 2021).

Statistical learning models such as random forest (RF)
regression and classification techniques have been used
previously in a variety of wetland research. For example, RF
regression has been used to estimate biomass density in wetlands
from WorldView-2 imagery (Mutanga et al., 2012). Similarly, RF
classification has been used to delineate wetland areas for
mapping wetland extent from a range of remotely sensed
imagery (e.g., Corcoran et al., 2013; Felton et al., 2019), and
for classifying and mapping the distribution of wetland types
(e.g., Dubeau et al., 2017; Mahdianpari et al., 2017). In a recent
study Wen and Hughes (2020) demonstrated the value of RF

classification over a variety of machine learning techniques for
mapping wetland vegetation in the Manning River estuary, New
South Wales, Australia. To the best of our knowledge, however,
RF-models developed to predict present-day distribution of
intertidal wetlands have not been applied to predict their
future distribution under sea level rise.

The aim of this paper is to demonstrate a new RF classification-
based method, applicable at the regional/jurisdictional scale, for
predicting potential areas that mangrove and saltmarsh might
migrate to in the future landscape under SLR. First, we build a
RF-model for each estuary using the map of current mangrove and
saltmarsh distribution. The RF-models establish the hydro-
geomorphological conditions for existing wetlands based on a set
of surrogate variables. We then predict the future distribution of
coastal wetlands under three SLR scenarios: + 0.5 m, + 1.0 m, and +
1.5 m. The first two scenarios are indicative of the range of SLR
projections for southeast Australia out to the year 2100 under RCP
8.5 and the latter scenario is likely to be exceeded beyond 2100
(Hanslow et al., 2018). Finally, the distributions of wetlands are
predicted under three land use constraint scenarios: limited
(migration is constrained within protected lands such as reserves
and natural conservation parks), intermediately constrained (low
intensity land uses such as grazed native vegetation are available),
and no limitation (all lands except urban settlements are available for
wetlands). The outcome of implementing this method is maps of
future mangrove and saltmarsh distribution that can inform
regional/jurisdictional scale assessments of intertidal wetland
vulnerability to sea level rise.

2 MATERIALS

2.1 Data Sources and Preparation
2.1.1 Response Variables
A variety of coastal saline wetlands exist in NSW, including salt
flats, saltmarsh, mangrove, tidal sand and mud flats and seagrass.
The three macrophyte-dominated wetlands are the only ones that
are mapped for natural resource management purposes, and
seagrass primarily occupies a subtidal position in the
landscape thus requiring a unique set of predictor variables.
We therefore focussed here on the occurrence of intertidal
mangrove and saltmarsh wetlands as the response variables
(Table 1).

In developing the model for predicting present-day
distribution of mangrove and saltmarsh, we used existing
macrophyte maps produced by the NSW Department of
Primary Industries (Fisheries), which are available online as
the Estuaries (including macrophyte detail) Data Set (https://
datasets.seed.nsw.gov.au/dataset/estuaries-including-
macrophyte-detail5ebff). High resolution aerial imagery was used
to map wetlands using Object Based Image Analysis (Trimble
eCognition), followed by field validation. Species of mangrove
and saltmarsh are not discriminated in the habitat maps and
polygons are classified as being dominated by either mangrove or
saltmarsh. Spatially balanced random samples of mapped
mangrove or saltmarsh were extracted using ArcMap 10.4
(ESRI, Redlands, CA, United States). The number of samples
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within each patch of mangrove or saltmarsh was determined by
the area of the polygon. To ensure that the random samples
extracted had a unique set of environmental variables we
restricted the distance between neighbouring points to be
greater than 5 m. Samples were also selected in adjacent areas
that were not mapped as either mangrove or saltmarsh and these
were called water or background. Water was defined as the
present-day extent of estuary excluding mapped mangrove and
saltmarsh. Background was defined as the present-day mapped
area of land, excluding mapped mangrove and saltmarsh, that
extends to the maximum inundation extent for the largest SLR
scenario considered here; i.e., + 1.5 m. Note that does not simply
mean the contour that is 1.5 m above present water level
throughout the estuary, because we have used a tidal plane
approach rather than the simplistic bathtub approach for
projecting future water levels inside the estuaries (see
Section 2.1.2).

Many of the estuary catchments in NSWhave been partially or
totally cleared and developed, for example, it is estimated that the
distribution of saltmarsh has been reduced by 80% as a result of
development in the Sydney region (Stricker, 1995; Saintilan and
Williams, 2000). To avoid any model bias toward “background”
areas, it was therefore necessary to exclude land use types
representative of human activities that may include previously
cleared areas of mangrove and saltmarsh (e.g., cropland, irrigated
pastures, forest plantation, residential areas) when generating
background points. Land use maps produced by the NSW
Department of Planning Industry and Environment, which are
available online as NSW Landuse 2017 (https://data.nsw.gov.au/
data/dataset/nsw-landuse-2017) were used to extract a random
sample of background points. These points were only sampled
from natural and semi-natural land cover that are neither
saltmarsh nor mangrove.

2.1.2 Predictor Variables
The choice of predictor variables was determined by 1) their
relevance to processes controlling the position of mangrove and

saltmarsh in the landscape; and 2) their availability as a state-wide
spatial data set.

Topographic variables—The state-wide 5 m digital elevation
model (DEM) used here was derived from airborne light
detection and ranging (LiDAR) surveys covering the entire
coastal area with a nominal vertical accuracy of 0.15 m. The
DEM was used to derive raster layers representing three
topographic predictor variables (Table 1). The local deviation
from a global window, LDFGW, was calculated using

LDFGWi � �y − yi

where �y is the evaluated mean of the 3 by 3 window, and yi is the
elevation of the focus grid. The dissection,D, describes the surface
texture and was calculated using

Di � yi − ymin

ymax − ymin

where yi is the elevation of the focus grid and ymax and ymin are
the maximum and minimum elevations within the 3 by 3
window. The compound topographic index, CTI, is a steady-
state wetness index (Moore et al., 1991) representing both the
upstream contributing area per unit width orthogonal to the flow
direction, A, and the surface slope, tanβ in radians, and was
calculated using

CTI � ln( A

tan β
)

These DEM-derived variables are expected to represent the
typical morphology of present-day mangrove and saltmarsh
wetlands as approximately planar (and shallow basins), with
horizontal to gently dipping surfaces that receive overland
flow and are poorly drained.

Sedimentological variables—Mangroves generally require soft
and fine-grained substrates to develop (Galloway, 1982), and
sediment type affects the condition and growth of saltmarsh
(Adam, 1978), suggesting that sedimentological variables would

TABLE 1 | List of model variables.

Variable name Variable
code

Range of values Foundational data layers

Response
Wetland/non-wetland Y mangrove, saltmarsh, terrestrial, water Estuarine Macrophytes

of NSW
Predictor (topographic)
Local deviation from a global
window

LDFGW 0 to ∞ LiDAR DEM

Dissection D 0 to ∞ LiDAR DEM
Compound topographic index CTI 0 to ∞ LiDAR DEM

Predictor (hydrologic)
Depth at HHWSS h -∞ to ∞ NSW Tidal Planes;

LiDAR DEM
Distance to water’s edge d 0 to ∞ NSW Tidal Planes;

LiDAR DEM
Predictor (sedimentology)
Sediment type S fluvial sand, fluvial sand to mud, mixture of fluvial sand and marine sand, marine sand,

marine sand to mud, mud, organic mud, and various
NSW Coastal Quaternary
Geology
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also be useful predictors of distribution. We used the NSW
Coastal Quaternary Geology Data Package (Troedson, 2015) to
create a raster of sediment type; which included fluvial sand,
fluvial sand to mud, mixture of fluvial sand, and marine sand,
marine sand, marine sand to mud, mud, organic mud, and
various.

Hydrological variables and SLR—Two hydrological variables
were used as predictors in the model, the water depth at High
High-Water Solstice Springs (HHWSS), h, and distance to the
water edge at HHWSS, d. The value of h was calculated as the
difference between the HHWSS tidal plane in the estuary and the
DEM; therefore, negative values of h indicate higher ground that
are not generally inundated by the tide except during extreme
events and positive values indicate lower ground that is flooded
during most spring high tides. To calculate the distance to the
water edge, we first used the difference between the HHWSS tidal
plane and the DEM to define the maximum extent of the water
surface. The water surface polygons were then converted to
polylines, and a raster of Euclidean distance to polyline was
created using ArcMap. Both h and d are effectively surrogating for
the tidal inundation regime, which varies with estuary type and
location within an estuary (Hughes et al., 2019).

The HHWSS tidal plane layers for each estuary were those
developed by Hanslow et al. (2018) in their assessment of regional
vulnerability of built assets to tidal inundation. In summary, their
procedure involved calculating the HHWSS elevation using
standard harmonic analysis techniques for each tide gauge in
those estuaries that are well gauged (Manly Hydraulics
Laboratory, 2012) and utilising a minimum curvature spline
technique to interpolate the tidal plane between the gauges.
Characteristic shapes of the tidal plane were identified for each
estuary type (see Section 3.1) and these were used to infer the
tidal planes in poorly gauged estuaries. Three SLR scenarios were
then simulated by adding 0.5, 1.0, and 1.5 m to the present-day
tidal plane. A full description of the method is provided in
Hanslow et al. (2018). The key advantage of this approach
over the simpler bathtub approach for simulating SLR is that
it more closely represents the true intra-estuary variation in water
level due to tidal amplification/attenuation and other shallow-
water processes characteristic of each estuary type (Hughes et al.,
2019; Khojasteh et al., 2020). The approach does not, however,
include any futuremodification to the tidal dynamics as a result of
morphological adjustment to SLR, thus it remains a first-order
approximation to future water levels inside the estuaries.

Since the variations were large in the abovementioned
numerical rasters, both within and among estuaries (Table 1),
all the numerical rasters were standardised to have a mean of zero
and a standard deviation of one prior to modelling.

3 METHODS

3.1 Study Area
We developed and tested our method along the coast of New
South Wales (NSW), Australia, a 1,973 km stretch of coastline
covering four bioregions and including 184 significant estuaries
(Figure 1; Geoscience Australia, 2021). The five main estuary

types with significant wetlands are coastal bays, drowned river
valley estuaries, riverine estuaries, barrier (open entrance)
estuaries, and intermittently closed and open lakes and
lagoons (Roy et al., 2001; Roper et al., 2011; Hughes et al.,
2019). Coastal bays have large, deep open entrances that
convey the full coastal tide range to the bay foreshore and
catchment inflows have little impact on water levels. Drowned
river valley estuaries have broad, deep entrances conveying the
full open coast tide well into the estuary, generally steep rocky
foreshores in the lower estuary, but they can be more riverine in
the upper estuary where catchment inflows influence water level
in addition to the tide. Riverine estuaries generally have narrower
and shallower entrances than the above types, but still convey a
large proportion of the open coast tide range into the estuary. The
full length of the estuary is channelised, and there is often
extensive low-lying floodplain in the lower estuary. Barrier
(open entrance) estuaries have narrow, shallow entrances that
dissipate/reflect a significant amount of the open coast tide range,
and the estuary is typically lake-like with several streams draining
into it. Intermittently closed and open lakes and lagoons are also
barrier-type estuaries that have narrow, shallow entrances that
attenuate most of the tide when open, and often close off so are
non-tidal for extended periods (Roy et al., 2001; Hughes et al.,
2019).

The estuaries, and their adjacent land potentially subject to
SLR inundation, display present-day land use that ranges from
entirely natural to entirely modified by human activity and
mixtures in between. The most common mangroves in NSW
are Avicennia marina and Aegiceras corniculatum, which occur
throughout the four NSW coastal bioregions (Figure 1). Other
species such as Bruguiera gymnorhiza, Rhizophora stylosa and
Excoecaria agallocha occur only in small stands, primarily in the
South-eastern Queensland bioregion, with some scattered
individuals in the northern part of the NSW North Coast
bioregion (Duke 2006). The diversity of saltmarsh plants in
NSW increases with increasing latitude (Saintilan, 2009).
Common saltmarsh species in NSW include Baumea juncea,
Ficinia nodosa, Juncus kraussii, Samolus repens, Sarcocornia
quinqueflora, Selliera radicans, Sporobulus virginicus, Suaeda
australis, Triglochin striata, and Zoysia macrantha (West et al.,
1985; Adam et al., 1988; Saintilan, 2009).

3.2 Random Forest Modelling and
Assessing Predicted Map Accuracy
3.2.1 Model Development and Implementation
The present-day distribution of mangrove and saltmarsh was
modelled using the random forest (RF) algorithm implemented
in the R package Caret (Kuhn, 2008). RF is a widely used
supervised machine learning method for classification and
regression (Oliveira et al., 2012), which has two useful features
making it the preferred algorithm for many mapping applications
(Vrieling et al., 2018). First, it is a non-parametric rule-based
algorithm which makes no a priori assumptions about the
relationship between the predictor variables and the response,
and generally performs better than parametric methods for
complex systems (Breiman, 2001). Second, it can deal with
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non-linearity and interactions among predictors better than
generalised linear and additive models (Oliveira et al., 2012).
A previous study undertaken in an estuary in the same region as
this study found that RF was among the top classifiers for
mapping wetlands in what is a heterogenous coastal
environment (Wen and Hughes, 2020).

The dataset of random samples of co-located response and
predictor variables was split into training (2/3) and testing (1/3)
subsets using stratified random sampling. With the training
dataset, the repeated (5 times) 10-fold cross-validation
procedure was used for model tuning as it was a good balance
for the bias-variance and accuracy-computation trade-offs.
Repeated cross-validation gives many more out-of-sample
datasets to compare, thus more precise assessments of how
well the model performs. To be computationally efficient while
optimising control over the model training process (Probst et al.,
2019), a custom tuning grid approach was utilised to fine tune the
two main hyper-parameters: 1) the number of variables that is
randomly sampled at each split and 2) the number of trees in the
forest (Kuhn, 2008). A two-dimensional search grid wasmanually
specified for each RF-model with the first hyper-parameter
ranging from 2 to 15 and the second having the values 500,
1000, and 1500 trees.

Using the tidal planes for each of the three SLR scenarios, the
two hydrological variables h and d (Section 2.1.2) were
recalculated for future sea levels. The trained and evaluated
RF-models for predicting mangrove and saltmarsh distribution
in the present-day landscape were then used to predict the future
distribution of mangrove and saltmarsh for the landscape under
each SLR scenario. To bracket the breadth of potential outcomes,
and make the outcomes relevant for planning purposes, three sets
of predictions were prepared for each SLR scenario. One where
there was no restriction on future wetland location by existing
land uses except urban land cover, and two where predictions of

future wetland locations are excluded from areas currently under
anthropogenically significant land use (e.g., urban, industrial,
agricultural etc.), assuming that they might be partially or fully
protected from present and future inundation. In the case where
the predictions are limited by land use, one set of predictions are
limited to protected lands such as reserves and natural
conservation parks), and the other set additionally includes
low intensity land uses such as grazed native vegetation.

3.2.2 RF-Model Predicted Map Accuracy Assessment
It is only possible to assess the accuracy of the model prediction
for the present-day distribution of mangrove and saltmarsh. The
reliability of the predictions under future SLR scenarios depends
on the present-day model accuracy, and a range of unquantifiable
processes in the future. The objective of our predicted map
accuracy assessment was to provide robust estimates of the
overall map accuracy and class-specific accuracy. We assessed
the predicted present-day map accuracy through cell-by-cell
comparison of the predicted mangrove, saltmarsh, background
and water class distribution with the existing maps. Stratified
random samples (50% of the grids) were created within the
existing map, and the mapped and predicted classes were used
to construct an error matrix.

The overall accuracy and the Kappa statistic are commonly
provided metrics for map accuracy, but these can be confounded
(Shao et al., 2019; Stehman and Foody, 2019), particularly if the
class sizes are significantly unbalanced which is the case here. The
F1 score is commonly used to assess accuracy in the machine
learning literature, but it is undesirably asymmetric and is
independent of the number of samples correctly classified as
negative (Chicco and Jurman, 2020). We therefore chose the
Matthews correlation coefficient (MCC) to assess accuracy, which
effectively balances Type I and Type II classification errors into a
single statistic and is insensitive to unbalanced class sizes. Chicco

FIGURE 1 | Location map showing the extent of the study region in New SouthWales (NSW), Australia containing four costal bioregions. Estuary names referred to
in the text are also shown.
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and Jurman, (2020) provide a thorough analysis of the relative
merits of the abovementioned metrics. MCC values are analogous
to Pearson correlation coefficients (Chicco et al., 2021) and we use
the following qualitative descriptors: 0.0–0.19 zero to negligible
correlation, 0.2–0.39 weak correlation, 0.4–0.59 moderate
correlation, 0.6–0.79 strong correlation, 0.8–1.0 very strong
correlation (Evans, 1996).

4 RESULTS

4.1 Regional Representativeness of the
Outputs
The 184 significant estuaries in NSW include 9 coastal bays, 8
drowned river valleys, 21 riverine estuaries, 36 barrier (open
entrance) estuaries, and 110 intermittently closed and open lakes
and lagoons (Roper et al., 2011; Hughes et al., 2019). Only 110 of the
184 estuaries had sufficient areal extent ofmangrove and/or saltmarsh
to build an RF-model. In the case of riverine and barrier (open
entrance) types 100% of these estuaries were modelled. Of the
drowned river valleys, coastal bays and intermittently closed and
open lakes and lagoons 88%, 56%, and 37%, respectively, were
modelled. While the percentage of intermittently closed and open
lakes and lagoonsmodelled was limited, mostly due to their small size
and small wetland area, they are the most numerous estuary type so
there was still a large number included. Overall, the range of estuary
types and the estuaries with the largest areas of intertidal wetland
(riverine, drowned river valley and barrier open entrance estuaries;
Hughes et al., 2019) are well represented in the outputs.

4.2 Accuracy of the RF-Model Predictions
In many of the NSW estuaries anthropogenic land covers have
modified the landscape to exclude saline wetlands all together.
The most appropriate set of RF-model predictions to test against
the present-day mapped distribution of mangrove and saltmarsh
is therefore the model prediction constrained to natural land use
covers. The MCC values for each estuary representing the
correlation between predicted and mapped distribution of total
wetland (mangrove and saltmarsh combined), or mangrove and
saltmarsh separately are summarised in Figure 2A. The MCC
values for total wetland were consistently high with a strong
correlation or better (MCC>0.60) occurring in 65% of the
modelled estuaries and a moderate correlation or better
(MCC>0.40) occurring in 94% of them. The MCC values for
mangrove and saltmarsh individually were not as strong. In the
case of mangroves alone, a strong correlation or better occurred
in 43% of the modelled estuaries containing mangrove and a
moderate correlation or better occurred in 84% of them. For
saltmarsh alone, a strong correlation or better occurred in 39% of
the modelled estuaries containing saltmarsh and a moderate
correlation or better occurred in 75% of them. The lower
accuracy in predicting the present-day distribution of
mangrove and saltmarsh individually, compared to predicting
total wetland distribution, is largely because of model confusion
between mangrove and saltmarsh. The MCC values for total
wetland distribution, grouped by estuary type, are summarised in
Figure 2B. The RF-models performed strongly in all the drowned
river valley type estuaries, although, these represent a small
component of the 110 estuaries modelled. Otherwise, the

FIGURE 2 | Boxplots of Matthews Correlation Coefficients (MCC) calculated from comparison between mapped wetland areas and predicted areas for present-
day sea level and restricted natural land covers. The data set is grouped by (A) wetland type (wetland is mangrove plus saltmarsh combined), and (B) estuary type
(CB—coastal bay, DRV—drowned river valley, RE—riverine estuary, BE—barrier estuary, ICOLL—intermittently closed, and open lake or lagoon). The median value is
indicated by the horizontal red line, the lower and upper limit of the blue box are the 25th and 75th percentiles, and the dashed lines extend to the maximum and
minimum value. (C) is the MCC value for total wetland (mangrove plus saltmarsh combined) plotted against total wetland area.
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accuracy of the RF-models is reasonably similar across the estuary
types. Figure 2C demonstrates no clear influence of total wetland
area in the estuary on the RF-model performance for the estuary.

Comparison of the mapped versus predicted total wetland
area, and mangrove and saltmarsh areas individually, for each of
the 110 modelled estuaries is shown in Figure 3. The comparison
demonstrates good overall correspondence, with a small to
modest bias toward overpredicting wetland area. This
overprediction is at least in part related to the fact that
anthropogenic land uses in many catchments have resulted in
removal of previously existing mangrove and saltmarsh areas,
which the models are predicting should be there. Other relevant
factors are discussed below (Section 5).

Figure 4 shows the present-day mapped mangrove and
saltmarsh areas compared to the RF-model prediction for an
estuary where there is strong correlation and an estuary where
there is only moderate correlation. Where there was strong
correlation (cf. Figures 4A,B) large areas of mangrove and of
saltmarsh were predicted in the correct locations and with the
correct extents. Boundaries between mangrove and saltmarsh
were also broadly correct. While there was minor confusion
between mangrove and saltmarsh, confusion between either
macrophyte and terrestrial background or open water areas
was largely absent. Where there is only moderate correlation
between mapped and RF-model prediction, there can be a variety
of differences. In the example shown in Figures 4C,D the
locations and extents of large areas of mangrove and
saltmarsh are broadly correct. There is, however, significant
confusion between mangrove and saltmarsh in the prediction
leading to incorrect boundaries between the two. Furthermore,
there is significant confusion between mangrove/saltmarsh and
terrestrial in some areas resulting in the prediction of mangrove
and saltmarsh where it does not occur. We recommend using
predictions where MCC is between 0.4 and 0.6 with caution and
predictions where MCC<0.4 should not be used.

4.3 Relative Importance of Predictor
Variables
The relative importance of predictor variables was evaluated
for the RF-model determined for each of the 110 estuaries. To
summarise the information, we have taken the relative
importance for each predictor variable, grouped them by
estuary type and calculated the mean and one standard
deviation of each variable for each estuary type (Figure 5).
While the relative importance of variables differed among
estuary types, two predictors were ranked the most
important for all RF-models—water depth at High High-
Water Solstice Springs (h) and local deviation from a global
window (LDFGW). The relative importance of other
predictors varied among estuary types. For example, the
importance of landscape surface texture (D) was larger than
distance to water edge (d) for drowned river valley estuaries,
but d was more important for all other estuaries. Generally,
sediment type made the least contribution to model
performance for all estuaries, but it was locally important in
some estuaries and had higher importance than the compound
topographic index (CTI) in intermittently closed and open
lakes and lagoons (Figure 5).

4.4 Illustrative Examples of Intertidal
Wetland Migration Under Sea Level Rise
Overall, theMCC values suggest that the RF-models in most cases
provide robust predictions for the distribution of intertidal
wetlands in the present-day landscape across a variety of
estuary types. This provides a level of confidence in applying
the RF-models to predict the potential distribution of mangrove
and saltmarsh in future landscapes under SLR scenarios. Some
examples of predicted changes in mangrove and saltmarsh
distribution under SLR are presented in Figures 6–8 to
illustrate pertinent points for the discussion section.

FIGURE 3 | Mapped mangrove areas, saltmarsh areas, and total wetland areas (mangrove plus saltmarsh) versus predicted areas for each of the 110 estuaries.
The black line is the 1:1 relationship.
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A reach of the Clyde River estuary, a drowned river valley type
estuary, with predominantly natural land-use, is shown in Figure 6.
Following a 0.5 m SLR a modest increase in mangrove area is
predicted at the expense of saltmarsh (cf. Figures 6A,B). Due to
the steep supra-tidal topography there is limited lateral
accommodation space, thus the present-day mangrove areas are
shown migrating into present-day saltmarsh areas, with little
opportunity for saltmarsh migration due to natural coastal
squeeze. A 1.0 m SLR results in significant loss of the seaward
margin of present-day mangrove areas due to excessive inundation
and continued reduction in the saltmarsh areas as they are overtaken
by mangrove (cf. Figures 6A,C). For the case of a 1.5 m SLR,
virtually all mangrove and saltmarsh areas are gone due to excessive
inundation and the naturally limited opportunities for migration
have been exhausted (cf. Figures 6A,D).

A lower reach of the Tweed River estuary, a riverine type
estuary, is shown in Figure 7. Comparing Figures 7A,B indicates
that at present-day sea level there are some minor areas suitable
for mangrove and saltmarsh that are currently excluded by
residential development and related infrastructure (central
areas present in Figure 7B and absent from Figure 7A).
Under a 0.5 m SLR minor loss of mangrove at the seaward
margins and significant encroachment of mangrove into
previous saltmarsh areas is predicted (Figure 7C). Some
predicted new opportunities for both mangrove and saltmarsh
are identified under the same SLR scenario if existing land use
constraints are relaxed (Figure 7D). Under a 1.5 m SLR all
significant areas of wetland are predicted to be lost in this
reach of the estuary due to excessive inundation and
anthropogenic coastal squeeze (Figure 7E). If some

FIGURE 4 | Present-day mapped mangrove and saltmarsh areas (A) compared to model predictions for present day (B) for Wapengo Lagoon where the MCC
values indicate very strong correlation—MCC is 0.91, 0.81, and 0.76 for total wetland, mangrove, and saltmarsh respectively. Present-day mapped mangrove and
saltmarsh areas (C) compared to model predictions for present day (D) for Shoalhaven River where the MCC values indicate moderate correlation—MCC is 0.51, 0.41,
and 0.33 for total wetland, mangrove, and saltmarsh respectively.
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anthropogenic land covers were given over to wetland migration
several small areas of saltmarsh habitat are predicted to develop
(Figure 7F).

A reach of the Moruya River, a riverine type estuary, is shown
in Figure 8. At present-day sea level in this reach there are large
wetland areas adjacent to low-lying floodplain dominated by
pasture. There is relatively little difference between the
present-day wetland area predictions under restricted versus
unrestricted land-use scenarios (cf. Figures 8A,B). Under a
0.5 m SLR however, the saltmarsh areas to the north of the
main east-west oriented river channel are predicted to be
almost completely lost due to mangrove expansion
(Figure 8C). Under the same 0.5 m SLR, if pasture is given up
then there is the potential for a significant area of saltmarsh to be
retained through migration into a newly inundated area
(Figure 8D).

5 DISCUSSION

We have developed and demonstrated a classification method to
predict mangrove and saltmarsh distribution in the landscape at
regional scale. The method is demonstrably robust in predicting
present-day saline wetland distribution, with moderate
correlation or better between predicted and mapped
distribution occurring in nearly all estuaries and strong
correlation or better occurring in more than half of the

estuaries. When combined with the latest intra-estuary SLR
modelling the classification method has reproduced several
previously documented regional aspects of wetland response to
SLR and coastal development. Wetland exclusion from suitable
areas in the present-day landscape by coastal infrastructure and
development (e.g., Stricker, 1995; Ross and Adam, 2013) was
illustrated in the Tweed River estuary (Figure 7). Mangrove
dieback along the seaward margins due to excessive
inundation (e.g., Adams and Human, 2016) under SLR was
illustrated in the Clyde River and Tweed River estuaries
(Figures 6, 7). Mangrove migration into saltmarsh areas (e.g.,
Saintilan and Williams, 2000) was demonstrated as an important
process beginning with the smallest SLR scenario in the Clyde,
Tweed and Moruya River estuaries (Figures 6–8). Finally, coastal
squeeze (e.g., Borchert et al., 2018) due to natural topography was
demonstrated in the Clyde River estuary with almost complete
loss of saltmarsh, due to mangrove migration into saltmarsh areas
and no accommodation space upslope for saltmarsh to migrate
into (Figure 6). Similarly, coastal squeeze due to coastal
development was demonstrated in the Tweed River estuary
(urban) and Moruya River estuary (agricultural). These latter
two cases provide examples of how changes in land use zoning
under future sea levels offer potential opportunities for increasing
wetland area and reducing vulnerability. The opportunities are
likely to be greater in agricultural rather than urban areas.

One hydrological and one topographic variable were the two
most important predictors in the RF-Models for all estuary types

FIGURE5 |Charts summarising the importance of predictor variables in the RFmodels, scaled from 0 to 100with themost important variable having the score 100.
The mean importance (horizontal bar) and standard deviation (line) for each estuary type is shown. The notation for the predictors is defined in Table 1. The estuary types
are riverine estuaries (RE), coastal bays (CB), drowned river valleys (DRV), barrier (open-entrance) estuaries (BR), and intermittently closed and open lakes and lagoons
(ICOLLs). These estuary types are described in Section 3.1.
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(Figure 5). NSW mangroves and saltmarshes are associated with
locally distinct tidal inundation regimes (Hughes et al., 2019;
Kumbier et al., 2021), thus the hydrological variable, h (i.e., water
depth at HHWSS), was the most important predictor variable
since it is the surrogate for tidal inundation regime. The
topographic variable, LDFGW (i.e., the local deviation from
global window) is an indicator of the local smoothness and
convexity/concavity of the land surface. LDFGW has also
emerged as an important predictor for vegetation in other
wetland studies (Powell et al., 2019; Shaeri Karimi et al., 2019;
Wen and Hughes, 2020), where values indicate approximately
planar (and shallow basin) topography, with horizontal to gently
dipping surfaces that receive overland flow and are poorly
drained. The pattern of importance in the minor predictor
variables was generally consistent across the five estuary types,
except that the topographical variable D (dissection) was
marginally more important in Drowned River Valley estuaries
(Figure 5). This is possibly due to a greater prevalence of tidal
creeks and large variations in elevation across small distances at
the margins of wetlands in these estuaries, associated with the
steep up-slope topography.

The RF-models applied to present-day conditions
performed robustly with respect to predicting total wetland

distribution and distributions of mangroves or saltmarsh
individually, although the accuracy was generally lower in
the latter case. Furthermore, in many estuaries there was a
small to modest overprediction in the wetland areas. There
are several factors contributing to errors in prediction.
Misclassification between the mangrove and saltmarsh
classes, due to the subtle differences in topographic and
hydrologic predicters between the two being close to the
resolution limits of the DEM and tidal plane layers was
one source. In some cases, overprediction of wetland areas
arose from predicted areas being disconnected from tidal
inundation due to the presence of structures or other
landscape modification, or potential fresh groundwater
input. This affected saltmarsh more than mangrove due to
its more elevated position in the landscape. Use of the
classified land cover map to exclude such areas was
partially successful, however, the best mix of land covers to
exclude seemed to vary between estuary type. Some
improvement in predictive accuracy could be achieved by
optimising the choice of land covers to exclude on an estuary
by estuary basis and by compiling a data base of tidal gates
and other flow restricting structures. In several estuaries the
wetlands appear as numerous relatively small isolated areas

FIGURE 6 | Area in the Clyde River (drowned river valley estuary type) showing distribution of mangrove and saltmarsh at (A) present-day; (B) 0.5 m SLR; (C) 1.0 m
SLR; and (D) 1.5 m SLR. The future water area shown is that expected for high high-water solstice springs. The predictions are not influenced by land use since the area
is entirely natural land covers. Images are oriented so that north is at the top.
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amongst large areas of background. This means there is
potential for true background areas to be sufficiently close
to being suitable for wetlands and thus falsely classified as
such. Finally, potential errors in all the foundational data
layers, particularly the DEM and macrophyte mapping,
influenced predictive accuracy. None of these factors can
be readily resolved without obtaining higher resolution
data and/or obtaining more site-specific information from
each estuary, which is beyond the scope of regional-scale
applications.

5.1 Broader Application of the Method
Maps of potential future mangrove and saltmarsh distribution
developed using the method described here could be used in
regional-scale assessments of intertidal wetland vulnerability
to sea level rise, either as a factor on their own or combined
with other information. For example, predicted losses and
gains in intertidal wetland area between present day and
future sea level scenarios can be calculated and used as a
first-pass means of assessing vulnerability. Moreover, the
opportunities arising from land use planning to

FIGURE 7 | Area in the lower Tweed River (riverine estuary type) showing predicted distribution of mangrove and saltmarsh at (A) present-day (restricted by land
use); (B) present-day (no restriction); (C) 0.5 m SLR (restricted by land use); (D) 0.5 m SLR (no restriction); (E) 1.0 m SLR (restricted by land use); and (F) 1.0 m SLR (no
restriction). The future water area shown is that expected for high high-water solstice springs. Images are oriented so that north is at the top.
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accommodate intertidal wetland migration to new areas can be
assessed by comparing maps for present day wetland
distribution with predicted future distributions constrained
by present-day land use covers, and with future distributions
that are unconstrained.

Predicting areas in the landscape that are potentially suited to
intertidal wetland under future sea level scenarios as described herein
addresses only one of the likely responses of intertidal wetlands to sea
level rise, i.e., horizontal migration. Some wetlands may accumulate
sediment and vegetation may grow at a sufficient rate to keep up
with sea level rise and thusmaintain their present-day position in the
landscape (e.g., Woodroffe and Davies, 2009; Rogers et al., 2019).
Climatic drivers may change the latitudinal range of vegetation
species and consequently thewetland type entirely (e.g., Osland et al.,
2016). The method and corresponding outputs presented here are
also suited to being incorporated with information addressing these
other factors, which would be included in a comprehensive intertidal
wetland vulnerability assessment.

6 CONCLUSION

We have demonstrated a novel method for predicting the
potential distribution of intertidal wetlands (mangrove and

saltmarsh) in the present-day landscape and future landscapes
under specified sea level scenarios. The method is demonstrably
robust in predicting the present-day distribution of intertidal
wetlands and is therefore assumed to be informative in predicting
potential future distributions when combined with the best
available intra-estuary tidal plane models of SLR. The method
reproduces several previously documented regional aspects of
wetland response to SLR and coastal development, including
wetland exclusion from suitable areas in the present-day
landscape by coastal infrastructure and development,
mangrove dieback due to excessive inundation, mangrove
migration into saltmarsh areas and coastal squeeze.

The method utilises a variety of hydro-geomorphological
surrogates that can be derived from digital elevation models,
Quaternary geology or soils mapping, land use mapping and a
representation of the future sea level inside estuaries. Here we
used projected tidal planes inside estuaries under future ocean
sea level scenarios. A bath-tub approach to future sea level
inside the estuary might also be applied but would be less
accurate. Application of the method at the regional scale has
been demonstrated for NSW, Australia, which contains 184
estuaries including five different estuary types distributed along
nearly 2,000 km of coastline. It is anticipated that outputs from
applying the method there and elsewhere would inform

FIGURE 8 | Area in theMoruya River (riverine estuary type) showing predicted distribution of mangrove and saltmarsh at (A) present-day (restricted by land use); (B)
present-day (no restriction); (C) 0.5 m SLR (restricted by land use); and (D) 0.5 m SLR (no restriction). The future water area shown is that expected for high high-water
solstice springs. Images are oriented so that north is at the top.
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assessments of intertidal wetland vulnerability to SLR and guide
planning for potential wetland migration pathways.
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